Cell Mediated And Humoral Immunity Compare And Contrast Essay

"Humoral" should not be confused with "humeral".

Humoral immunityorhumoural immunity is the aspect of immunity that is mediated by macromolecules found in extracellular fluids such as secreted antibodies, complement proteins, and certain antimicrobial peptides. Humoral immunity is so named because it involves substances found in the humors, or body fluids. It contrasts with cell-mediated immunity. Its aspects involving antibodies are often called antibody-mediated immunity.

The study of the molecular and cellular components that form the immune system, including their function and interaction, is the central science of immunology. The immune system is divided into a more primitive innate immune system, and acquired or adaptive immune system of vertebrates, each of which contains humoral and cellular components.

Humoral immunity refers to antibody production and the accessory processes that accompany it, including: Th2 activation and cytokine production, germinal center formation and isotype switching, affinity maturation and memory cell generation. It also refers to the effector functions of antibodies, which include pathogen and toxin neutralization, classical complement activation, and opsonin promotion of phagocytosis and pathogen elimination.[1]

History[edit]

The concept of humoral immunity developed based on analysis of antibacterial activity of the serum components. Hans Buchner is credited with the development of the humoral theory.[2] In 1890 he described alexins, or "protective substances", which exist in the blood serum and other bodily fluid and are capable of killing microorganisms. Alexins, later redefined "complement" by Paul Ehrlich, were shown to be the soluble components of the innate response that lead to a combination of cellular and humoral immunity, and bridged the features of innate and acquired immunity.[2]

Following the 1888 discovery of the bacteria that cause diphtheria and tetanus, Emil von Behring and Kitasato Shibasaburō showed that disease need not be caused by microorganisms themselves. They discovered that cell-free filtrates were sufficient to cause disease. In 1890, filtrates of diphtheria, later named diphtheria toxins, were used to vaccinate animals in an attempt to demonstrate that immunized serum contained an antitoxin that could neutralize the activity of the toxin and could transfer immunity to non-immune animals.[3] In 1897, Paul Ehrlich showed that antibodies form against the plant toxinsricin and abrin, and proposed that these antibodies are responsible for immunity.[2] Ehrlich, with his friend Emil von Behring, went on to develop the diphtheria antitoxin, which became the first major success of modern immunotherapy.[3] The presence and specificity of compatibility antibodies became the major tool for standardizing the state of immunity and identifying the presence of previous infections.[3]

SubstanceActivityDiscovery
Alexin(s)
Complement
Soluble components in the serum
that are capable of killing microorganisms
Buchner (1890),
Ehrlich (1892)[2]
AntitoxinsSubstances in the serum that can neutralize
the activity of toxins, enabling passive immunization
von Behring and Kitasato (1890)[4]
BacteriolysinsSerum substances that work with the
complement proteins to induce bacterial lysis
Richard Pfeiffer (1895)[5]
Bacterial agglutinins
and precipitins
Serum substances that agglutinate bacteria
and precipitate bacterial toxins
von Gruber and Durham (1896),[6]
Kraus (1897)[7]
HemolysinsSerum substances that work with complement
to lyse red blood cells
Belfanti and Carbone (1898)[8]
Jules Bordet (1899)[9]
OpsoninsSerum substances that coat the outer membrane
of foreign substances and enhance the rate of
phagocytosis by macrophages
Wright and Douglas (1903)[10]
AntibodyFormation (1900), antigen-antibody binding
hypothesis (1938), produced by B cells (1948),
structure (1972), immunoglobulin genes (1976)
Founder: P Ehrlich[2]

Mechanism [11][edit]

In humoral immune response, first the B cells mature in the bone marrow and gain B-cell receptors (BCR's) which are displayed in large number on the cell surface.

These membrane-bound protein complexes have antibodies which are specific for antigen detection. Each B cell has a unique antibody that binds with an antigen. The matured B cells migrate from bone marrow to lymph nodes or other lymphatic organs, where they begin to encounter pathogens.

B cell activation[edit]

When a B cell encounters an antigen, it is bound to the receptor and taken inside by endocytosis. The antigen is processed and presented on its surface again with MHC-II molecule.

B cell proliferation[edit]

The B cell waits for the TH cell to bind to the complex and this binding will activate TH cell and it releases cytokines that induce B cells to divide rapidly which make thousands of identical clones of B cell. These daughter cells either become plasma cells or memory cells. The memory B cells remain inactive here; later when these memory B cells encounter the same antigen due to reinfection, they divide and form Plasma cells. On the other hand, the plasma cells produce a large number of antibodies which are released free in the circulatory system.

Antibody-antigen reaction[edit]

Now these antibodies will encounter antigens and bind with them. This will either interfere with the chemical interaction between host and foreign cells, or they may form bridges between their antigenic sites hindering their proper functioning, or their presence will attract macrophages or killer cells to phagocytose them.

Complement system[edit]

Main article: Complement system

The complement system is a biochemical cascade of the innate immune system that helps clear pathogens from an organism. It is derived from many small blood plasmaproteins that work together to disrupt the target cell's plasma membrane leading to cytolysis of the cell. The complement system consists of more than 35 soluble and cell-bound proteins, 12 of which are directly involved in the complement pathways.[1] The complement system is involved in the activities of both innate immunity and acquired immunity.

Activation of this system leads to cytolysis, chemotaxis, opsonization, immune clearance, and inflammation, as well as the marking of pathogens for phagocytosis. The proteins account for 5% of the serumglobulin fraction. Most of these proteins circulate as zymogens, which are inactive until proteolytic cleavage.

Three biochemical pathways activate the complement system: the classical complement pathway, the alternate complement pathway, and the mannose-binding lectin pathway. The classical complement pathway typically requires antibodies for activation and is a specific immune response, while the alternate pathway can be activated without the presence of antibodies and is considered a non-specific immune response.[1] Antibodies, in particular the IgG1 class, can also "fix" complement.

Antibodies[edit]

Main article: Antibody

Immunoglobulins are glycoproteins in the immunoglobulin superfamily that function as antibodies. The terms antibody and immunoglobulin are often used interchangeably. They are found in the blood and tissue fluids, as well as many secretions. In structure, they are large Y-shaped globular proteins. In mammals there are five types of antibody: IgA, IgD, IgE, IgG, and IgM. Each immunoglobulin class differs in its biological properties and has evolved to deal with different antigens.[12] Antibodies are synthesized and secreted by plasma cells that are derived from the B cells of the immune system.

An antibody is used by the acquired immune system to identify and neutralize foreign objects like bacteria and viruses. Each antibody recognizes a specific antigen unique to its target. By binding their specific antigens, antibodies can cause agglutination and precipitation of antibody-antigen products, prime for phagocytosis by macrophages and other cells, block viral receptors, and stimulate other immune responses, such as the complement pathway.

An incompatible blood transfusion causes a transfusion reaction, which is mediated by the humoral immune response. This type of reaction, called an acute hemolytic reaction, results in the rapid destruction (hemolysis) of the donor red blood cells by host antibodies. The cause is usually a clerical error, such as the wrong unit of blood being given to the wrong patient. The symptoms are fever and chills, sometimes with back pain and pink or red urine (hemoglobinuria). The major complication is that hemoglobin released by the destruction of red blood cells can cause acute renal failure.

See also[edit]

References[edit]

  1. ^ abcJaneway CA Jr (2001). Immunobiology (5th ed.). Garland Publishing. ISBN 0-8153-3642-X. 
  2. ^ abcdeMetchnikoff, Elie (1905) Immunity in infectious disease (Full Text Version) Cambridge University Press
  3. ^ abcdGherardi E. The experimental foundations of Immunology Immunology Course Medical School, University of Pavia.
  4. ^von Behring E, Kitasato S. (1890) On the acquisition of immunity against diphtheria and tetanus in animals (German). Dtsch. Med. Wochenschr. 16: 1145-1148
  5. ^Peer biography by Paul Fildes Biographical Memoirs of Fellows of the Royal Society, Vol. 2, Nov., 1956 (Nov., 1956), pp. 237-247
  6. ^hygiene of the sexual life (German, fulltext)
  7. ^Mentioned in On the Formation of Specific Anti-Bodies in the Blood, Following Upon Treatment with the Sera of Different Animals, George H. F. Nuttall American Naturalist, Vol. 35, No. 419 (Nov., 1901), pp. 927-932
  8. ^BELFANTI, S. AND CARBONE, T.: Produzione di sostanze tossiche mmcl siero di animale inoculati con sangue eterogeneo. Gior. d.r. Accad. di. med. di Torino, Series 4, 46: 321, 1898.
  9. ^Bordet, J. 1898. Sur l'agglutination et la dissolution des globules rouges par le serum d'animaux injectes de sang defibrine. Ann. De l'Inst. Pasteur. xii: 688-695.
  10. ^Wright, A. E., and S. R. Douglas. 1904. An experimental investigation of the role of the body fluids in connection with phagocytosis. Proc. R. Soc. London 72:357-370.
  11. ^Boundless (2016-05-26). "Humoral Immune Response". Boundless. 
  12. ^Pier GB, Lyczak JB, Wetzler LM (2004). Immunology, Infection, and Immunity. ASM Press. ISBN 1-55581-246-5. 

Further reading[edit]

B cell activation is a large part of the humoral immune response.

Home»Pathology»Comparison of Humoral and Cell Mediated Immunity

Comparison of Humoral and Cell Mediated Immunity

Pathology26,293 Views

Humoral Immunity
Cell mediated Immunity
Main cellsB lymphocytesT lymphocytes
MaturationGenerated and matured in bone marrowOriginate in bone marrow and complete development in thymus
Protect againstExtracellular microbes and their toxins
  1. toxin induced diseases
  2. infections (virulence related to polysaccharide capsule)
Intracellular microbes
  1. viruses
  2. parasites (leishmania)
  3. bacteria (mycobacteria, listeria)
  4. kill tumor cells
%age of lymphocytes10-20% circulating peripheral lymphocyte population60-70%
Location in lymph nodesSuperficial cortexParacortical areas
Location in spleenWhite pulpPeriarteriolar sheaths
ReceptorsB-cell antigen receptor complex consisting of mainly IgM and IgD immunoglobulinsIn 95% T cells à alpha/beta TCR

In minority à gamma,   T cells

Accessory surface moleculesIgα, Igβ, Fc receptors, CD40, CD21CD3 molecular complex

Dimer of ∑ chain

CD4, CD8, CD2, CD28

integrins

End result of activationDifferentiation of B cells into antibody secreting cells called plasma cellsSecrete locally acting proteins called cytokines
Hypersensitivity reactionsI, II, III are antibody mediatedIV is cell mediated
Role of MHC moleculesAntigen receptor recognizes whole unprocessed proteins and has no requirement for presentation by MHC proteinAntigen receptor recognizes only processed peptides in association with MHC protein
Regulator of antibody synthesisNoYes
OnsetRapidDelayed type hypersensitivity
AntibodiesFormedNot formed
EvaluationFrom plasma level of antibodiesSkin test for development of delayed type of hypersensitivity
Cells involvedAb synthesis requires 3 cells:
  1. t lymphocytes
  2. b lymphocytes
  3. macrophage
  1. macrophage
  2. helper T cells
  3. natural killer T cells
  4. cytotoxic T cells
2012-07-06

Editor

Check Also

Cellular Aging

Cellular death due to aging is caused by accumulation of injurious events and genetically controlled …

0 Thoughts to “Cell Mediated And Humoral Immunity Compare And Contrast Essay

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *